La première difficulté rencontrée est de comprendre l'énoncé et en particuliers la situation:
- il y a 32 "objets" dans la tirelire et ces "objets" sont soit des pièces de 2€ soit des billets de 5€.
- si on compte l'argent, on obtient 97€.
Et l'objectif est de trouver combien il y a de billets et combien il y a de pièces.
La deuxième difficulté qui suit est de réussir à prendre en compte tous ces éléments!
En effet, certains élèves trouvent une "combinaison" qui fait 97€... Mais pas avec 32 objets...
D'autres utilisent 32 objets ... mais n'ont pas 97€!
Ces 2 exemples montrent que ces élèves se sont lancés dans une recherche... Mais n'ont pris en compte qu'une partie des contraintes... Certains en ont conscience. Il faut donc maintenant adapter sa recherche.
Pour cela, on peut prendre d'autres valeurs au hasard. Ou effectuer un raisonnement pour adapter de manière plus efficace.
Par exemple: avec 16 pièces et 16 billets (donc 32 objets), on aurait un total de 16 x 2€ +16x5€ = 32€ +80€ = 112€.
112€ étant plus grand que 97€ donc il n'y a pas 16 pièces et 16 billets dans la tirelire. Il faut faire baisser ce total... Mais garder 32 objets.
Donc il faut échanger des pièces contre des billets ou inversement.
On peut après cela, tâtonner au hasard... Ou alors raisonner pour être plus efficace:
"si on échange une pièce contre un billet, on gagne de l'argent alors qu'on en a trop. Donc il faut échanger un billet contre une pièce (pour perdre de l'argent)".
On peut donc essayer: 17 pièces et 15 billets (je remplace un billet par une pièce pour garder 32 objets et faire diminuer le total):
17x2€ + 15x5€ = 34€ +75€= 109€. On n'obtient pas 97€ donc il n'y a pas 17 pièces et 15 billets.
On peut continuer à remplacer un billet par une pièce... Ou alors essayer de trouver un raisonnement encore plus efficace.
On remarque qu'en échangeant un billet contre une pièce, on diminue le montant de 3€.
Avec 17 pièces et 15 billets on a un total de 109€ soit 12€ de trop........
Donc il faut remplacer 4 billets par 4 pièces car on "perdra" 4 x 3€ = 12€.
Il y aura donc 17 + 4 = 21 pièces et 15 - 4 = 11 billets.
On vérifie que cela est correct:
21 x 2€ + 11 x 5€= 42 € + 55€ = 97€!!!!

